Validity of the SMS, Phone, and medical staff Examination sports injury surveillance system for time-loss and medical attention injuries in sports

1Department of Public Health, Section of Sport Science, Aarhus University, Aarhus, Denmark
2Sport Medicine Clinic, Orthopaedic Department Hospital of Lillebaelt, Institute of Regional Health Service Research and Centre for Research in Childhood Health, IOB, University of Southern Denmark, Odense, Denmark
3Oslo Sports Trauma Research Centre, Norwegian School of Sport Sciences, Oslo, Norway
4Division of Sportstrauumatology, Aarhus University Hospital, Aarhus, Denmark
5School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia, Australia
6Faculty of Kinesiology, University of New Brunswick, Fredericton, New Brunswick, Canada
7Faculty of Kinesiology, Sport Injury Prevention Research Centre, Calgary, Canada
8Sport Injury Prevention Research Centre, University of Calgary, Edmonton, Canada
9Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark

Correspondence
Merete Møller, Department of Public Health, Section of Sport Science, Aarhus University, Aarhus C, Denmark.
Email: memo@ph.au.dk

The accurate measurement of sport exposure time and injury occurrence is key to effective injury prevention and management. Current measures are limited by their inability to identify all types of sport-related injury, narrow scope of injury information, or lack the perspective of the injured athlete. The aims of the study were to evaluate the proportion of injuries and the agreement between sport exposures reported by the SMS messaging and follow-up telephone part of the SMS, Phone, and medical staff Examination (SPEx) sports injury surveillance system when compared to measures obtained by trained on-field observers and medical staff (comparison method). We followed 24 elite adolescent handball players over 12 consecutive weeks. Eighty-six injury registrations were obtained by the SPEx and comparison methods. Of them, 35 injury registrations (41%) were captured by SPEx only, 10 injury registrations (12%) by the comparison method only, and 41 injury registrations (48%) by both methods. Weekly exposure time differences (95% limits of agreement) between SPEx and the comparison method ranged from −4.2 to 6.3 hours (training) and −1.5 to 1.0 hours (match) with systematic differences being 1.1 hours (95% CI 0.7 to 1.4) and −0.2 (95% CI −0.3 to −0.2), respectively. These results support the ability of the SPEx system to measure training and match exposures and injury occurrence among young athletes. High weekly response proportions (mean 83%) indicate that SMS messaging can be used for player measures of injury consequences beyond time-loss from sport. However, this needs to be further evaluated in large-scale studies.

KEYWORDS
athletic injury, handball, injury registration, surveillance, validation study

1 INTRODUCTION

Sports injuries are a common problem in youth. Thus, developing injury prevention strategies is a priority. Effective prevention requires an understanding of the type (eg, medical, time-loss), occurrence, etiology, and consequences of sports injuries through valid surveillance.

Traditionally, sport injury surveillance research has focused on the identification of injuries that result in medical attention or time-loss from sport. For example, Emery
et al.6 developed and validated an injury surveillance system that used trained observers to measure sport exposure hours, time-loss, and medical attention injuries. The benefits of this approach include the precise identification of time-loss and medical attention injuries and medical staff examination of injured players. However, this is a time- and resource-intensive method that may not be feasible in many sporting environments. Moreover, this approach may result in under-reporting of other injury types (eg, overuse injuries) and provides limited information about the player’s perspective on consequences of injury beyond time-loss or the need for medical attention.7

The Oslo Sports Trauma Research Centre (OSTRC) Overuse Injury Questionnaire is a self-report injury surveillance tool developed to address many of the limitations of observer reporting.7 A questionnaire is delivered via e-mail and is based on four fundamental questions applied to different body regions defined a priori. These questions inquire about the extent to which problems in a particular body region affected a player’s sports participation (question 1), training volume (question 2), performance (question 3), and pain (question 4).

Specifically, the OSTRC tool purports to improve the identification of injuries and physical complaints missed by traditional approaches, as well as measures the consequences of injury based on self-reported participation and performance limitations rather than time-loss.7,8 However, the large volume of questions needed to address multiple injuries7,9 and reliance on e-mail delivery may be problematic in youth and community sport where athletes may be more accustomed to other modes of communication such as SMS messaging.10,11

SMS messaging has previously been demonstrated as a promising tool for injury occurrence measurement in handball,11 soccer,12,13 and community sport,10,14 and initial evidence of validity has been demonstrated in senior sport.13,14

However, a drawback to the previous use of SMS messaging for injury surveillance in team sports has been the general inability to seek further clarification about the brief text responses. Moreover, no prior studies have attempted to measure the consequences of injury beyond time lost from sport from the players’ perspective using SMS messaging.

Therefore, we developed the SMS, Phone, and medical staff Examination (SPEx) sports injury surveillance system to address the limitations of previous approaches by integrating a text-based approach to capturing all forms of injury, with telephone follow-up and player measures of injury consequences. The aims of this study were to evaluate the proportion of injuries and the agreement between sports exposures reported by the SMS messaging and follow-up telephone part of SPEx when compared to measures obtained by trained on-field observers and medical staff.

2 | MATERIALS AND METHOD

2.1 | Study design and participants

This was a prospective methodological cohort study including elite adolescent handball players in the “under 16” (U-16) or “under 18” (U-18) divisions of the Danish handball league. We enrolled a convenience sample of players from a sports college specializing in handball. The college was selected, as there were full-time sports physiotherapists coordinating medical care. First, we invited the college, their coaches, and physiotherapists to participate through e-mail. After reviewing the study protocols with the coaches and physiotherapists, we invited all eligible players to participate in the study. Weekly reporting of handball exposure time and handball-related injuries were measured from the players over 12 consecutive weeks (from December 30, 2012 to March 24, 2013) by both the SPEx system as well as by trained on-field observers and medical staff (comparison method) concurrently. No incentives were offered for participation. According to Danish law, The Ethics Committee of Central Denmark Region deemed the study to be exempt from full ethical review (167/2012) due to the study design (methodological observational study). The Danish Data Protection Agency (J. nr. 2012 - 41 - 1042) approved the study. All participants provided their signed informed consent before study enrollment.

2.2 | Outcomes

An injury was defined as any handball-related injury that resulted in the following: the inability to complete a full training or match session, missing a subsequent session, or medical attention.6 Match and training exposure was defined according to the F-MARC consensus statement previous used in handball.11,15

2.3 | The SPEx sports injury surveillance system

The SPEx system obtains information from players through three methods: SMS messaging, telephone interviews, and physical examination by medical personnel.

Every Sunday, participants received a series of SMS messages in two parts (Figure 1). The messages included questions from the OSTRC Overuse Injury Questionnaire.7 Non-responders received a reminder SMS the following Tuesday and Wednesday.

Part 1 comprised three questions about injury occurrence, training exposure, and match exposure (Figure 1, questions 1, 6, and 7). The first of the four OSTRC questions7 (Figure 1, question 1) was used to identify an injury. Players’ self-reporting injuries in question 1 were sent additional messages. Part 2 involved further questions (Figure 1, questions
PART 1

Question 1

Participation in normal training and competition

Have you had any difficulties participating in normal training and competition due to physical problems during the past week?

- **R1** Full participation without physical problems
- **R2** Full participation but with physical problems (no contact to medical personnel)*
- **R3** Full participation, but with physical problems and contact to medical personnel*
- **R4** Reduced participation due to physical problems
- **R5** Cannot participate due to physical problems

PART 2

Question 2

New injury

Are your physical problems due to the same reason as last week?

- **R1** Yes
- **R2** No

Question 3

Reduced training volume

To what extent have you reduced your training volume due to physical problems during the past week?

- **R1** No reduction
- **R2** To a minor extent
- **R3** To a moderate extent
- **R4** To a major extent
- **R5** Cannot participate at all

Question 4

Reduced performance

To what extent have physical problems affected your performance during the past week?

- **R1** No effect
- **R2** To a minor extent
- **R3** To a moderate extent
- **R4** To a major extent
- **R5** Cannot participate at all

Question 5

Pain

To what extent have you experienced pain related to your sport during the past week?

- **R1** No pain
- **R2** Mild pain
- **R3** Moderate pain
- **R4** Severe pain

Question 6

Training exposure

State in numbers, how many hours you have participated in handball training during the past week?

Question 7

Match exposure

State in numbers, how many minutes you have participated in handball matches during the past week?

FIGURE 1 SMS message flow in SPEx. *Response modified compared to the original OSTRC overuse questionnaire*
To classify the injury as new or existing and document its consequences on training, performance, and pain.

To decrease question volume and improve responding, our delivery of the OSTRC questions differed from the original questionnaire in three ways:

1. Questions 3, 4, and 5 (Figure 1) were only sent to injured players and not to all participants;
2. The players answered questions 1, 3, 4, and 5 (Figure 1) concerning all physical problems and not specific body regions;
3. For physical problems not leading to time-loss, we distinguished between those with and without medical attention by adding an extra option to question 1 (Figure 1): “3. Full participation, but with physical problems and contact to medical personnel,” and adding “(no contact to medical personnel)” to option 2.

Following the 2006 injury consensus statement, the SMS questions were designed to comprise all physical problems irrespective of the need for time-loss or medical attention. We decided to use the phrase “physical problem” instead of “physical complaints” suggested by Fuller et al. This was done to be consistent with the OSTRC-questionnaire and because some players had difficulty understanding the interpretation of “complaint” in Danish translation. Before enrollment, participants received oral and written information detailing the definition of a “physical problem” (pain, discomfort, soreness, stiffness).

As a part of the SPEx method, players injured at study start and players reporting a new injury during the study were contacted within 1 week by trained final year physiotherapy students who obtained additional injury details through a 5- to 10-minute standardized telephone interview addressing injury mechanisms, injury location, and type as described previously. If multiple injuries were identified in the follow-up telephone interview, players were asked to identify their worst injury and then continue to report this injury and its consequences the following weeks.

The last part of the SPEx method is the physical medical examination of reported injuries. This part was not applied in this study.

2.4 Comparison method

Our comparison method was the injury surveillance system described by Emery et al. Trained team designates (volunteer coaches from each of the included college teams) attended each training and match session and collected information on individual sport exposure hours and injury occurrence. An injury report form was used to document any handball-related injury. The team designates initiated the injury report form at the time of injury, and a trained physiotherapist completed the form. Unlike Emery et al., we included medical attention injuries not resulting in time-loss from sport when players sought medical attention from the physiotherapists between training/match sessions. Players were referred to a sports medicine physician, at the discretion of the physiotherapist, which differs from the original approach by Emery et al., where all players with time-loss injuries were referred to a physician.

The team designates recorded handball exposure on a weekly exposure sheet. Exposures were categorized as (a) full participation (player participating 75% of the time or more), (b) partial participation (player participating, but less than 75%), or (c) no participation. All injury report forms and weekly exposure sheets were administered to the principal investigator every week.

2.5 Statistical analysis

All statistical analyses were conducted in Stata version 14.1 software (StataCorp, College Station, TX, USA). To evaluate the proportion of injuries reported by both methods, we calculated the percentage of injury reports reported by SPEx only, by the comparison method only, and by both. In the comparison of injury reports, we used any injury registration irrespective if it was a new injury or an injury previously reported during the study period. Physical problems recorded by SPEx that did not result in the inability to complete a full session, missing a subsequent session, or medical attention were not included in the comparison.

We also registered how many weeks a player in total was affected by injury and divided this into four main categories: (a) no injury; (b) mildly affected (≤1 week); (c) moderately affected (>1 and ≤4 weeks); and (d) severely affected (>4 weeks). This was compared between the two methods by a 4×4 table and with Cohen’s linear weighted kappa statistics.

Table 1 Demographics of participants

<table>
<thead>
<tr>
<th>Sex</th>
<th>(n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys n (%)</td>
<td>10 (42)</td>
</tr>
<tr>
<td>Girls n (%)</td>
<td>14 (58)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
</tr>
<tr>
<td>U-16 n (%)</td>
<td>6 (25)</td>
</tr>
<tr>
<td>U-18 n (%)</td>
<td>18 (75)</td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>17.0 (0.9)</td>
</tr>
<tr>
<td>Player position</td>
<td></td>
</tr>
<tr>
<td>Back players n (%)</td>
<td>9 (38)</td>
</tr>
<tr>
<td>Wing players n (%)</td>
<td>9 (38)</td>
</tr>
<tr>
<td>Line players n (%)</td>
<td>4 (17)</td>
</tr>
<tr>
<td>Goalkeepers n (%)</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Mean years handball experience (SD)</td>
<td>9.7 (3.0)</td>
</tr>
<tr>
<td>Mean hours weekly handball training (SD)</td>
<td>9.6 (3.2)</td>
</tr>
</tbody>
</table>
For SPEx, a missing answer in this analysis was handled in the following way: if the player reported an injury in both the previous and the following week, we considered the player to be injured. Otherwise, we considered the player to not be injured.

Furthermore, we compared exposure times reported by SPEx and the comparison method by estimating 95% limits of agreement. For SPEx, missing answers were excluded. In the comparison method, if a player had participated only partially (more than 0%, but <75%), the comparison exposure time was estimated as 0.5 times the total exposure time for that training or match.

3 | RESULTS

Forty-six players from four teams were invited to participate. Of these, one team of 14 players elected not to participate, six players attended the college morning training but not the club training, and two players did not answer any of the SMS questions during the study period. Thus, data from 24/46 (52%) players were included in the analysis. The demographics of the study population are described in Table 1.

The proportion of players’ weekly responses to the SMS messages (after reminders) in SPEx ranged from 96% at the beginning of the study to 75% after 12 weeks. When players responded more than 1 to question 1 (Participation in training and competition, Figure 1), the response proportion to question 2 (New or Same injury, Figure 1) was 99%. The total response proportions to questions 6 and 7 were 97%. We obtained additional injury details for ninety-two percent of new injuries and injuries at baseline in the subsequent telephone interview. The assigned team designates in the comparison method provided complete data for each week during the study period.

3.1 | Comparison of handball exposure, injury occurrence, and consequences

We obtained a total of 76 registrations of injury occurrences out of 288 observations by the SPEx and comparison methods. The two methods agreed upon 41 injury registrations and 157 non-injury registrations. Thirty-five injury registrations (41%) were captured by SPEx only, 10 injury registrations (12%) by the comparison method only (Table 2).

The vast majority (24) of the 35 injury registrations missed by the comparison method were categorized as medical attention injuries not leading to time-loss by SPEx (response 3 to question 1). The comparison method had classified three of the remaining missing registration as non-injuries and “absence for other reason.”

Of the 10 injury registrations only captured by comparison method, three were due to non-response in SPEx, one injury was classified as a physical problem not leading to time-loss or medical attention and was not included in these analyses, and six players reported no injury in SPEx.

Figure 2 shows the registrations of injury status for each player reported by both methods during the 12-week follow-up. As illustrated in the Figure, 34/48 (71%) of the missing values in SPEx were derived from four players (ID 6, 11, 14, and 16). Only one player had complete identical observations by both methods (ID 23).

The vast majority of the injury registrations identified by both methods were “the same injury as last week” (SPEx: 85%, Comparison: 78%). Three new injuries were recorded by the comparison method only, while five new injuries were recorded by SPEx only. Seven new injuries were recorded by both methods; three of these were, however, registered by SPEx with a delay of 1 week (Figure 2, ID 5 and 8) or in the previous week (Figure 2, ID 11).

The SPEx method recorded 12 “physical problems” that did not result in time-loss or medical attention and therefore did not counted as reportable injuries in the comparison analysis.

SPEx had 48 missing answers: Of these, two missing values were imputed as injury using the analytical approach previously described. The differences between the numbers of weeks players were affected by injuries divided into the four categories measured by SPEx and by the comparison methods are illustrated in Table 3. The percentage of agreement was estimated to 83.33% with a weighted kappa of 0.61 (95% CI 0.49 to 0.74).

The exposure time reported by the SPEx and comparison methods is presented in Table 4. Weekly exposure time differences (95% limits of agreement) between SPEx and the comparison method ranged from −5.2 to 6.5 hours (training) and −1.6 to 1.0 hours (match) with systematic differences being 0.7 hours (95% CI 0.3 to 0.10) and −0.3 (95% CI −0.4 to −0.2), respectively.

4 | DISCUSSION

The SPEx sports injury surveillance system identified 88% of all reported injury registrations, and 33% more injuries...
compared to the comparison method. This supports the ability of the SPEx system to identify medical and time-loss injuries.

Several factors need to be considered when interpreting these results. According to the comparison method (Figure 2), six players, although responding to SMS messages, did not report their injuries. The false-negative answers may be because of the burden of extra SMS questions and follow-up by phone, which also has been argued as a possible reason for the injury decline in the study by Ekegren et al.¹⁰

SPEx found more injury registrations than the comparison method. In particular, two-thirds (24/35) of the injury registrations missed by the comparison method were recorded as medical attention injuries by SPEx. However, only five were new injuries or injuries experienced prior to the study, and therefore further followed up in the telephone interview. All five players sought medical assistance outside of the medical personnel affiliated with the handball team, thus supporting the hypothesis that sole reliance on field observation may underestimate injury occurrence and consequences, which is also argued by Nilstad et al.¹³

The remaining 19 injury registrations were recorded as “the same injury” as last week and therefore not followed up by telephone interview. Unfortunately, the physiotherapists participating in the comparison method only recorded new injuries, and it is, therefore, unknown whether these registrations from the players represent actual injury registrations or false-positive responses. However, our results are in line with previous studies which have found that using SMS

FIGURE 2 Injury registrations by the SPEx and reference (Observer) methods during the 12-week study period. ● Previous reported injury or injury before study start by reference (Observer) method. ○ Previous reported injury or injury before study start by SPEx. ◆ New injury by reference (Observer) method. ◇ New injury by SPEx. ● Missing

TABLE 3 Injury consequences by the SPEx and comparison (Observer+medical staff method)

<table>
<thead>
<tr>
<th>SPEx</th>
<th>None (0 wk)</th>
<th>Mild (1 wk)</th>
<th>Moderate (2-4 wk)</th>
<th>Severe (>4 wk)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (0 wk)</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Mild (1 wk)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Moderate (2-4 wk)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Severe (>4 wk)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>24</td>
</tr>
</tbody>
</table>
messages for injury registration captures approximately 50% more injuries than traditional medical staff-based or sport trainer-based observations. Unlike these studies, we did not restrict our analyses to new injuries but considered all injuries whether or not they had been previously reported. As illustrated in Figure 2, some players reported the same injury as last week without actually having had an injury in the previous week. This emphasizes that all “same injury” self-reports in SPEX should also be followed up carefully in future studies.

Another source of discordance impacting the number of injury registrations from SPEX was that three time-loss “injuries” identified by SPEX were classified as non-injuries and “absence for other reason” by the comparison method. This highlights the potential to improve the SPEX method by including an option for players to indicate that their absence was due to other reasons than a sport-related injury (eg, illness or holiday).

There was moderate between-method agreement on injury consequences (weeks affected by injury). SPEX tended to classify injury consequences as more severe than the comparison method, but these results may have been influenced by the fact that we did not contact players reporting “the same injury like last week.” These results may also be influenced by the missing answers in SPEX. Missing data are frequently encountered in injury surveillance, especially when tracking large cohorts of athletes. Thus, considerations for dealing with missing data are relevant for all methods of injury surveillance. As opposed to SPEX, the assigned team designates in the comparison method provided complete registrations. Using our imputation of missing values approach, two of 48 missing values were imputed as injuries, and it is unlikely that this has influenced the study results (Table 2).

SPEX also identified 12 “physical problems” registrations that did not lead to time-loss or medical attention. This is consistent with previous research reporting an underestimation of injury burden when restricting injury definitions to only events resulting in time-loss or the need for medical attention.

Considering exposure to match-play and training, SPEX recorded more training hours, but fewer match hours than the comparison method. In particular, we believe that the SPEX method provides a better estimate of match exposure time because a player with, for example, 5-minute match exposure is expected to report this, while the comparison method will categorize the player as having participated partly, thus being considered having played 30 minutes (50% of 1 hour match time). These measurement differences have potential to result in important discrepancies in exposure and injury outcomes and emphasize the importance of valid measurement to avoid discrepancies of injury incidences between studies and may be the reason why Møller et al.11 found a higher match incidence using SMS messages compared to previous studies.

These results should be considered in light of the study’s strengths and limitations. The primary study strengths include the 12-week longitudinal design and side-by-side comparisons of a highly standardized measurement to an established, validated injury surveillance system. This was the first study to include player measures of injury consequences within a system comprising SMS messaging and telephone follow-up. We observed a decline in response proportions over time, which may indicate that some participants were experiencing “response fatigue.” Nevertheless, this did not appear to have a substantial impact on the agreement estimates.

Study limitations include the relatively small sample and that 48% (22 players) either chose not to participate or were excluded in the study. Investigating a larger cohort of athletes would allow us to explore a wider spectrum of injuries with greater precision. This affects the external validity of our results, which may not generalize other populations. In fact, the response proportions to the SMS questions in this study are lower than previous studies in larger cohorts, and it is possible that the results would be different if it had been performed in another college. Finally, the study sample comprised adolescent elite handball athletes, who are expected to have a high compliance, and these results, may not generalize to other sports or non-elite populations who might be less motivated to participate in studies. However, when used in the general population, participation proportions have been high, indicating the potential for strong participation outside of elite sport.

Table 4: Exposure time by the SPEX and comparison (Observer+medical staff) methods

<table>
<thead>
<tr>
<th></th>
<th>SPEX All players</th>
<th>Mean (95% CI)</th>
<th>Observer+medical staff All players</th>
<th>Mean (95% CI)</th>
<th>Bias (95% CI)</th>
<th>Limits of agreement (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traininga (h)</td>
<td>1315</td>
<td>5.6 (5.2-6.0)</td>
<td>1269</td>
<td>4.5 (4.1 to 4.8)</td>
<td>1.1 (0.8 to 1.5)</td>
<td>−4.3 to 6.6</td>
</tr>
<tr>
<td>Matchb (h)</td>
<td>119</td>
<td>0.5 (0.4-0.6)</td>
<td>216</td>
<td>0.8 (0.7 to 0.9)</td>
<td>−0.3 (−0.3 to −0.2)</td>
<td>−1.5 to 1.0</td>
</tr>
<tr>
<td>Total (h)</td>
<td>1434</td>
<td>6.1 (5.7-6.5)</td>
<td>1484</td>
<td>5.2 (4.8 to 5.6)</td>
<td>0.9 (0.5 to 1.3)</td>
<td>−4.7 to 6.5</td>
</tr>
</tbody>
</table>

*aBased on 235 observations due to 53 missing responses in SPEX.
*bBased on 236 observations due to 52 missing responses in SPEX.
5 | PERSPECTIVES

This study is the first to investigate the concurrent validity of SMS messaging in youth sport. Our results support the ability of the SPEx system to identify medical and time-loss injuries. Using the SMS and phone parts of SPEx appears to be superior and is likely to be a less costly approach to measuring sports injuries and exposures compared to the use of side line observers and medical staff.

The high response proportions to all seven questions indicate that it is possible to incorporate the OSTRC questions to measure injury consequences via SMS messaging as opposed to e-mail—an approach that may be particularly attractive to youth athletes. The SPEx system facilitates the early identification of injuries as well as tracking of symptoms and recurrent events. However, the feasibility of the complete SPEx system, which also includes the validation of the reported injuries by medical staff, needs to be investigated in a large cohort over the course of at least one season.

ACKNOWLEDGEMENTS

The authors thank all the players, coaches, physiotherapists, and students for their participation in this study, and part-time lecturer Svend Juul for help with Figure 2. [Correction added on 10 April 2017, after first online publication: The figure number mentioned in the Acknowledgement section was previously wrong and is now corrected in this version.]

REFERENCES
